Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin (DMD) gene, is associated with fatal muscle degeneration and atrophy. Patients with DMD have progressive reductions in skeletal muscle strength and resistance to eccentric muscle stretch. Using the DE50-MD dog model of DMD, we assessed tibiotarsal joint (TTJ) flexor and extensor force dynamics, and the resistance of dystrophic muscle to eccentric stretch.
View Article and Find Full Text PDFObjectives: Faculty development is essential for academic emergency physicians to maintain clinical skills and succeed in administrative and leadership roles and for career advancement and satisfaction. Faculty developers in emergency medicine (EM) may struggle to find shared resources to guide faculty development efforts in a way that builds on existing knowledge. We aimed to review the EM-specific faculty development literature since 2000 and come to a consensus about the most useful for EM faculty developers.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by the absence of dystrophin, a membrane-stabilizing protein encoded by the gene. Although mouse models of DMD provide insight into the potential of a corrective therapy, data from genetically homologous large animals, such as the dystrophin-deficient golden retriever muscular dystrophy (GRMD) model, may more readily translate to humans. To evaluate the clinical translatability of an adeno-associated virus serotype 9 vector (AAV9)-microdystrophin (μDys5) construct, we performed a blinded, placebo-controlled study in which 12 GRMD dogs were divided among four dose groups [control, 1 × 10 vector genomes per kilogram (vg/kg), 1 × 10 vg/kg, and 2 × 10 vg/kg; = 3 each], treated intravenously at 3 months of age with a canine codon-optimized microdystrophin construct, rAAV9-CK8e-c-μDys5, and followed for 90 days after dosing.
View Article and Find Full Text PDFBackground: Duchenne muscular dystrophy (DMD) is an X-linked inherited myopathy that causes progressive skeletal and cardiac muscle disease. Heart lesions were described in the earliest DMD reports, and cardiomyopathy is now the leading cause of death. However, diagnostics and treatment for cardiomyopathy have lagged behind those for appendicular and respiratory skeletal muscle disease.
View Article and Find Full Text PDF