Publications by authors named "J N Hovenier"

We demonstrate for the first time that the Hartmann wavefront sensor (HWS) principle can be applied for characterizing the wavefronts of terahertz (THz) electromagnetic radiation. The THz Hartmann wavefront sensor consists of a metallic plate with an array of holes and a two-dimensional scanable pyro-electric detector. The THz radiation with different wavefronts was generated by a far-infrared gas laser operated at 2.

View Article and Find Full Text PDF

We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x12) from a microwave synthesizer at approximately 15 GHz.

View Article and Find Full Text PDF

The quasiparticle relaxation time in superconducting films has been measured as a function of temperature using the response of the complex conductivity to photon flux. For tantalum and aluminum, chosen for their difference in electron-phonon coupling strength, we find that at high temperatures the relaxation time increases with decreasing temperature, as expected for electron-phonon interaction. At low temperatures we find in both superconducting materials a saturation of the relaxation time, suggesting the presence of a second relaxation channel not due to electron-phonon interaction.

View Article and Find Full Text PDF

We present experimentally determined scattering matrix elements of birefringent rutile particles in water as a function of the scattering angle for a wavelength of 633 nm (in air). These elements are compared with the results of T-matrix calculations for prolate spheroids. For the diagonal matrix elements the results of the T-matrix calculations are in good agreement with those of the measurements.

View Article and Find Full Text PDF

We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto interference fringes, which are similar to those found in narrow double-metal waveguide QCLs.

View Article and Find Full Text PDF