The prairies of Canada support a diversity of insect pollinators that contribute pollination services to flowering crops and wild plants. Habitat loss and use of managed pollinators has increased conservation concerns for wild pollinators, as mounting evidence suggests that honey bees (Apis mellifera) may reduce their diversity and abundance. Plant-pollinator community analyses often omit non-bee pollinators, which can be valuable contributors to pollination services.
View Article and Find Full Text PDFNature is aglow with numerous captivating examples of UV-fluorescence in the animal kingdom. Despite a putative role as a visual signal, exploration of UV-fluorescence in plants and its role in plant-animal interactions is lagging in comparison. Almost 50 years ago, UV-fluorescence of floral nectar, a crucial reward for pollinators, was reported for 23 flowering plant species.
View Article and Find Full Text PDFHoney bees (Apis mellifera) are widely used for honey production and crop pollination, raising concern for wild pollinators, as honey bees may compete with wild pollinators for floral resources. The first sign of competition, before changes appear in wild pollinator abundance or diversity, may be changes to wild pollinator interactions with plants. Such changes for a community can be measured by looking at changes to metrics of resource use overlap in plant-pollinator interaction networks.
View Article and Find Full Text PDFIsolated teeth, previously referred to Aves, are more common than other bird fossils from the Late Cretaceous of Alberta. However, there are no known morphological synapomorphies that distinguish isolated bird teeth, and features of these teeth are generally shared with those of non-avian theropods and crocodilians. Here, specimens ranging from Late Santonian to Late Maastrichtian in age are described and qualitatively categorized into morphotypes, most of which strongly resemble teeth of extant juvenile and some fossil crocodilians.
View Article and Find Full Text PDFPrevious work in landscape genetics suggests that geographic isolation is of greater importance to genetic divergence than variation in environmental conditions. This is intuitive when configurations of suitable habitat are a dominant factor limiting dispersal and gene flow, but has not been thoroughly examined for habitat specialists with strong dispersal capability. Here, we evaluate the effects of geographic and environmental isolation on genetic divergence for a vagile invertebrate with high habitat specificity and a discrete dispersal life stage: Dod's Old World swallowtail butterfly, Papilio machaon dodi.
View Article and Find Full Text PDF