The mechanisms of carbon sticking reactions to C36 and C-C80 fullerenes were investigated with molecular dynamics simulations (MD) using the Second-generation Reactive Empirical Bond Order (SREBO) and Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potentials that were specifically optimized for carbon-carbon interactions. Results showed the existence of three possible sticking configurations where the projectile atom can stick either to one, two or three atoms of the target fullerene. They also showed that although the two potentials give similar magnitudes for the sticking cross-sections, they yield fairly different results as far as sticking mechanisms and configurations at thermal collision-energies, i.
View Article and Find Full Text PDFA parametric study is performed with the 2D FESTIM code for the ITER monoblock geometry. The influence of the monoblock surface temperature, the incident ion energy and particle flux on the monoblock hydrogen inventory is investigated. The simulated data is analysed with a Gaussian regression process and an inventory map as a function of ion energy and incident flux is given.
View Article and Find Full Text PDFJ Pediatr Gastroenterol Nutr
April 2018