Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems towards this goal requires flexible initial state preparation, precise time evolution and extensive probes for final state characterization. Here we present a quantum simulator comprising 69 superconducting qubits that supports both universal quantum gates and high-fidelity analogue evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments.
View Article and Find Full Text PDFAt strong repulsion, the triangular-lattice Hubbard model is described by s=1/2 spins with nearest-neighbor antiferromagnetic Heisenberg interactions and exhibits conventional 120° order. Using the infinite density matrix renormalization group and exact diagonalization, we study the effect of the additional four-spin interactions naturally generated from the underlying Mott-insulator physics of electrons as the repulsion decreases. Although these interactions have historically been connected with a gapless ground state with emergent spinon Fermi surface, we find that, at physically relevant parameters, they stabilize a chiral spin liquid (CSL) of Kalmeyer-Laughlin (KL) type, clarifying observations in recent studies of the Hubbard model.
View Article and Find Full Text PDFPhys Rev Lett
December 2020
The realization of interacting topological states of matter such as fractional Chern insulators (FCIs) in cold atom systems has recently come within experimental reach due to the engineering of optical lattices with synthetic gauge fields providing the required topological band structures. However, detecting their occurrence might prove difficult since transport measurements akin to those in solid state systems are challenging to perform in cold atom setups and alternatives have to be found. We show that for a ν=1/2 FCI state realized in the lowest band of a Harper-Hofstadter model of interacting bosons confined by a harmonic trapping potential, the fractionally quantized Hall conductivity σ_{xy} can be accurately determined by the displacement of the atomic cloud under the action of a constant force which provides a suitable experimentally measurable signal for detecting the topological nature of the state.
View Article and Find Full Text PDFThe experimental realization of the Harper-Hofstadter model in ultracold atomic gases has placed fractional states of matter in these systems within reach-a fractional Chern insulator state (FCI) is expected to emerge for sufficiently strong interactions when half-filling the lowest band. The experimental setups naturally allow us to probe the dynamics of this topological state; yet little is known about its out-of-equilibrium properties. We explore, using density matrix renormalization group simulations, the response of the FCI state to spatially localized perturbations.
View Article and Find Full Text PDF