Charge detection mass spectrometry (CD-MS) is a powerful technique for the analysis of large, heterogeneous biomolecules. By directly measuring the charge states of individual ions, CD-MS can measure the masses from spectra where conventional deconvolution approaches fail due to the lack of isotopic resolution or distinguishable charge states. However, CD-MS is inherently slow because hundreds or thousands of spectra need to be collected to produce adequate ion statistics.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2023
Among the several possible uses of nanoparticulated systems in biomedicine, their potential as theragnostic agents has received significant interest in recent times. In this work, we have taken advantage of the medical applications of Gadolinium as a contrast agent with the versatility and huge array of possibilities that microfluidics can help to create doped Hydroxyapatite nanoparticles with magnetic properties in an efficient and functional way. First, with the help of Computational Fluid Dynamics (CFD), we performed a complete and precise study of all the elements and phases of our device to guarantee that our microfluidic system worked in the laminar regime and was not affected by the presence of nanoparticles through the flow requisite that is essential to guarantee homogeneous diffusion between the elements or phases in play.
View Article and Find Full Text PDFFor high-field power applications of high-temperature superconductors, it became obvious in recent years that nano-engineered artificial pinning centers are needed for increasing the critical current and pinning potential. As opposed to the artificial pinning centers obtained by irradiation with various particles, which is a quite expensive approach, we have studied superconducting samples having self-assembled defects, created during the sample fabrication, that act as effective pinning centers. We introduced a simple, straight-forward method of estimating the frequency-dependent critical current density by using frequency-dependent AC susceptibility measurements, in fixed temperatures and DC magnetic fields, from the positions of the maxima in the dependence of the out-of-phase susceptibility on the amplitude of AC excitation magnetic field.
View Article and Find Full Text PDFDetailed measurements of the in-plane resistivity were performed in a high-quality Ba([Formula: see text])[Formula: see text] ([Formula: see text]) single crystal, in magnetic fields up to 9 T and with different orientations [Formula: see text] relative to the crystal c axis. A significant [Formula: see text] rounding is observed just above the superconducting critical temperature [Formula: see text] due to Cooper pairs created by superconducting fluctuations. These data are analyzed in terms of a generalization of the Aslamazov-Larkin approach, that extends its applicability to high reduced-temperatures and magnetic fields.
View Article and Find Full Text PDFWe investigate thermal fluctuations in terms of diamagnetism and magnetotransport in superconducting NaFeCo As single crystals with different doping levels. Results show that in the case of optimal doped and lightly overdoped (x = 0.03, 0.
View Article and Find Full Text PDF