Herein, we performed a simple virus capture and photoinactivation procedure using visible light on phosphatidylcholine vesicles. l-α-Phosphatidylcholine vesicles were enriched by viral receptors, GT1b gangliosides, and the nonpolar photosensitizer 5,10,15,20-tetraphenylporphyrin. These vesicles absorb in the blue region of visible light with a high quantum yield of antiviral singlet oxygen, O (Δ).
View Article and Find Full Text PDFNew functionalities were added to biocompatible polycaprolactone nanofiber materials through the co-encapsulation of chlorin e6 trimethyl ester (Ce6) photogenerating singlet oxygen and absorbing light both in the blue and red regions, and using 4-(N-(aminopropyl)-3-(trifluoromethyl)-4-nitrobenzenamine)-7-nitrobenzofurazan, NO-photodonor (NOP), absorbing light in the blue region of visible light. Time-resolved and steady-state luminescence, as well as absorption spectroscopy, were used to monitor both photoactive compounds. The nanofiber material exhibited photogeneration of antibacterial species, specifically nitric oxide and singlet oxygen, upon visible light excitation.
View Article and Find Full Text PDFThe strong antifungal effect of sulfonated polystyrene nanoparticles (NPs) with an encapsulated tetraphenylporphyrin (TPP) photosensitizer is reported here. TPP is activated by visible light, resulting in the generation of singlet oxygen. Its antifungal action is potentiated in the presence of potassium iodide, yielding I/I⁻, another antifungal species.
View Article and Find Full Text PDFWe have prepared photoactive multifunctional nanofiber membranes via the simple electrospinning method. The antibacterial and photocatalytic properties of these materials are based on the generation of singlet oxygen formed by processes photosensitized by the tetraphenylporphyrin encapsulated in the nanofibers. The addition of magnetic features in the form of magnetic maghemite (γ-FeO) nanoparticles stabilized by polyethylenimine enables additional functionalities, namely, the postirradiation formation of hydrogen peroxide and improved photothermal properties.
View Article and Find Full Text PDFClinically approved photodynamic therapy (PDT) is a minimally invasive treatment procedure that uses three key components: photosensitization, a light source, and tissue oxygen. However, the photodynamic effect is limited by both the photophysical properties of photosensitizers as well as their low selectivity, leading to damage to adjacent normal tissue and/or inadequate biodistribution. Nanoparticles (NPs) represent a new option for PDT that can overcome most of the limitations of conventional photosensitizers and can also promote photosensitizer accumulation in target cells through enhanced permeation and retention effects.
View Article and Find Full Text PDF