Publications by authors named "J Moores"

This paper presents a system of hybrid models that combine both mechanistic and data-driven approaches to predict physical powder blend properties from their raw component properties. Mechanistic, probabilistic models were developed to predict the particle size and shape, represented by aspect ratio, distributions of pharmaceutical blends using those of the raw components. Additionally, the accuracy of existing mixture rules for predicting the blend's true density and bulk density was assessed.

View Article and Find Full Text PDF

Recent discoveries related to the habitability and astrobiological relevance of the outer Solar System have expanded our understanding of where and how life may have originated. As a result, the Icy Worlds of the outer Solar System have become among the highest priority targets for future spacecraft missions dedicated to astrobiology-focused and/or direct life detection objectives. This, in turn, has led to a renewed interest in planetary protection concerns and policies for the exploration of these worlds and has been a topic of discussion within the COSPAR (Committee on Space Research) Panel on Planetary Protection.

View Article and Find Full Text PDF

Ultraviolet shielding materials are potential ecological niches for biosignatures. Finding such materials on Mars would narrow the search for potentially habitable regions. A mini-goniometer was built to collect transmission spectra as a function of scattering angle for Mars analog regoliths (JSC Mars-1, basalt, cheto bentonite, and kieserite) and crystalline rock samples from the Haughton impact structure on Devon Island, Nunavut, in the Canadian High Arctic Archipelago.

View Article and Find Full Text PDF

Ultraviolet (UV) irradiation on the surface of Mars is an important factor that affects the survivability of microorganisms on Mars. The possibility of martian brines made from Fe(SO), MnSO, and MgSO salts providing a habitable niche on Mars via attenuation of UV radiation was investigated on the bacteria and . Results demonstrate that it is possible for brines containing Fe(SO) on Mars to provide protection from harmful UV irradiation, even at concentrations as low as 0.

View Article and Find Full Text PDF

During transit between the Earth and planetary destinations, spacecraft encounter conditions that are deleterious to the survival of terrestrial microorganisms. To model the resulting bioburden reduction, a Cruise-Phase Microbial Survival (CPMS) model was prepared based upon the Lunar Microbial Survival model, which considers the effects of temperature, vacuum, ultraviolet (UV), and ionizing radiation found in the space environment. As an example, the CPMS was used to determine the expected bioburden reductions on the Europa Clipper spacecraft upon arrival at Jupiter under two different transit scenarios.

View Article and Find Full Text PDF