Background: Watermelon mosaic virus (WMV) is one of the most prevalent viruses affecting melon worldwide. Recessive resistance to WMV in melon has previously been reported in the African accession TGR-1551. Moreover, the genomic regions associated to the resistance have also been described.
View Article and Find Full Text PDFThe vast variation in floral traits across angiosperms is often interpreted as the result of adaptation to pollinators. However, studies in wild populations often find no evidence of pollinator-mediated selection on flowers. Evolutionary theory predicts this could be the outcome of periods of stasis under stable conditions, followed by shorter periods of pollinator change that provide selection for innovative phenotypes.
View Article and Find Full Text PDFA comprehensive collection of 1254 tomato accessions, corresponding to European traditional and modern varieties, early domesticated varieties, and wild relatives, was analyzed by genotyping by sequencing. A continuous genetic gradient between the traditional and modern varieties was observed. European traditional tomatoes displayed very low genetic diversity, with only 298 polymorphic loci (95% threshold) out of 64 943 total variants.
View Article and Find Full Text PDFA novel haplotype-based approach that uses Procrustes analysis and automatic classification was used to provide further insights into tomato history and domestication. Agrarian societies domesticated species of interest by introducing complex genetic modifications. For tomatoes, two species, one of which had two botanical varieties, are thought to be involved in its domestication: the fully wild Solanum pimpinellifolium (SP), the wild and semi-domesticated Solanum lycopersicum var.
View Article and Find Full Text PDFTomato leaf curl New Delhi virus (ToLCNDV) emerged in the Mediterranean Basin in 2012 as the first DNA bipartite begomovirus ( family), causing severe yield and economic losses in cucurbit crops. A major resistance was identified in the wild melon accession WM-7 ( kachri group), but the mechanisms involved in the resistant response remained unknown. In this work, we used RNA-sequencing to identify disease-associated genes that are differentially expressed in the course of ToLCNDV infection and could contribute to resistance.
View Article and Find Full Text PDF