Diamond color centers are promising optically addressable solid-state spins that can be matter-qubits, mediate deterministic interaction between photons, and act as single photon emitters. Useful quantum computers will comprise millions of logical qubits. To become useful in constructing quantum computers, spin-photon interfaces must, therefore, become scalable and be compatible with mass-manufacturable photonics and electronics.
View Article and Find Full Text PDFAlthough grating couplers have become the de-facto standard for optical access to integrated silicon photonics platforms, their performance at visible wavelengths, in moderate index contrast platforms such as silicon nitride, leaves significant room for improvement. In particular, the index contrast governs the diffraction efficiency per grating tooth and the resulting overall coupler length. In this work, we develop two approaches to address this problem: a dielectric grating that sums multiple optical modes to increase the overall output intensity; and an embedded metal grating that enhances the attainable refractive index contrast, and therefore reduces the on-chip footprint.
View Article and Find Full Text PDFWe have designed and implemented a photon-pair source, based on the spontaneous four wave mixing (SFWM) process in a few-mode fiber, in a geometry which permits multiple, simultaneous SFWM processes, each associated with a distinct combination of transverse modes for the four participating waves. In our source: i) each process is group-velocity-matched so that it is, by design, nearly-factorable, and ii) the spectral separation between neighboring processes is greater than the marginal spectral width of each process. Consequently, there is a direct correspondence between the joint amplitude of each process and each of the Schmidt mode pairs of the overall two-photon state.
View Article and Find Full Text PDFWe present an experimental and theoretical study of photon pairs generated by spontaneous four-wave mixing (SFWM), based on birefringent phasematching, in a fiber that supports more than one transverse mode. We present SFWM spectra, obtained through single-channel and coincidence photon counting, which exhibit multiple peaks shown here to be the result of multiple SFWM processes associated with different combinations of transverse modes for the pump, signal, and idler waves.
View Article and Find Full Text PDF