Although electrical muscle stimulation (EMS) of skeletal muscle effectively prevents muscle atrophy, its effect on the breakdown of muscle component proteins is unknown. In this study, we investigated the biological mechanisms by which EMS-induced muscle contraction inhibits disuse muscle atrophy progression. Experimental animals were divided into a control group and three experimental groups: immobilized (Im; immobilization treatment), low-frequency (LF; immobilization treatment and low-frequency muscle contraction exercise), and high-frequency (HF; immobilization treatment and high-frequency muscle contraction exercise).
View Article and Find Full Text PDFThis study sought to develop a deep learning-based diagnostic algorithm for plaque vulnerability by analyzing intravascular optical coherence tomography (OCT) images and to investigate the relation between AI-plaque vulnerability and clinical outcomes in patients with coronary artery disease (CAD). A total of 1791 study patients who underwent OCT examinations were recruited from a multicenter clinical database, and the OCT images were first labeled as either normal, a stable plaque, or a vulnerable plaque by expert cardiologists. A DenseNet-121-based deep learning algorithm for plaque characterization was developed by training with 44,947 prelabeled OCT images, and demonstrated excellent differentiation among normal, stable plaques, and vulnerable plaques.
View Article and Find Full Text PDFWe report on the preparation of reinforced membranes (SPP-QP-PE, where SPP stands for sulfonated polyphenylene), composed of an in-house proton-conductive polyphenylene ionomer (SPP-QP) and a flexible porous polyethylene (PE) mechanical support layer. By applying the push coating method, dense, uniform, transparent, and thin SPP-QP-PE membranes were obtainable. The use of SPP-QP with higher ion exchange capacity induced very high proton conductivity of SPP-QP-PE, leading to high fuel cell performance even at low humidified conditions (e.
View Article and Find Full Text PDFAbstract: The development of new treatments for malignant melanoma, which has the worst prognosis among skin neoplasms, remains a challenge. The tumor microenvironment aids tumor cells to grow and resist to chemotherapeutic treatment. One way to mimic and study the tumor microenvironment is by using three-dimensional (3D) co-culture models (spheroids).
View Article and Find Full Text PDF