Publications by authors named "J Milucka"

Article Synopsis
  • The endosymbiont Candidatus Azoamicus ciliaticola was identified as a potential ATP producer for a specific anaerobic ciliate, similar to the role of mitochondria in other cells.
  • Researchers have reported four new complete genomes of related respiratory endosymbionts found in groundwater across California, Ohio, and Germany, contributing to our understanding of microbial diversity.
  • These endosymbionts are part of a newly defined lineage and have been shown to possess a cytochrome cbb oxidase for aerobic respiration, indicating they can thrive in various environments worldwide.
View Article and Find Full Text PDF

Methane (CH) accumulation in the well-oxygenated lake epilimnion enhances the diffusive atmospheric CH emission. Both lateral transport and in situ oxic methane production (OMP) have been suggested as potential sources. While the latter has been recently supported by increasing evidence, quantifying the exact contribution of OMP to atmospheric emissions remains challenging.

View Article and Find Full Text PDF

Lacustrine methane emissions are strongly mitigated by aerobic methane-oxidizing bacteria (MOB) that are typically most active at the oxic-anoxic interface. Although oxygen is required by the MOB for the first step of methane oxidation, their occurrence in anoxic lake waters has raised the possibility that they are capable of oxidizing methane further anaerobically. Here, we investigate the activity and growth of MOB in Lake Zug, a permanently stratified freshwater lake.

View Article and Find Full Text PDF

Nitrogen (N) fixation in oligotrophic surface waters is the main source of new nitrogen to the ocean and has a key role in fuelling the biological carbon pump. Oceanic N fixation has been attributed almost exclusively to cyanobacteria, even though genes encoding nitrogenase, the enzyme that fixes N into ammonia, are widespread among marine bacteria and archaea. Little is known about these non-cyanobacterial N fixers, and direct proof that they can fix nitrogen in the ocean has so far been lacking.

View Article and Find Full Text PDF
Article Synopsis
  • Methylphosphonate is utilized by microorganisms in marine waters when phosphate is scarce, leading to the unexpected production of methane, a potent greenhouse gas.
  • The study shows significant rates of methane production in the western tropical North Atlantic, even in phosphate-rich conditions, indicating that methylphosphonate can still contribute to methane levels.
  • Key microbial groups, including Pelagibacterales and SAR116, have the genetic capability to use methylphosphonate, suggesting its ecological role in carbon fixation and the marine carbon cycle.
View Article and Find Full Text PDF