Publications by authors named "J Michael Wells"

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Measuring virus in biofluids is complicated by confounding biomolecules coisolated with viral nucleic acids. To address this, we developed an affinity-based microfluidic device for specific capture of intact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach used an engineered angiotensin-converting enzyme 2 to capture intact virus from plasma and other complex biofluids.

View Article and Find Full Text PDF

Background: Variability in long-term endovascular treatment outcomes for intracranial aneurysms has prompted questions regarding the effects of these treatments on aneurysm hemodynamics. Endovascular techniques disrupt aneurysmal blood flow and shear, but their influence on intra-aneurysmal pressure remains unclear. A better understanding of aneurysm pressure effects may aid in predicting outcomes and guiding treatment decisions.

View Article and Find Full Text PDF

Bernard Greenberg was a ground-breaking scientist in the worlds of medical-veterinary and forensic entomology, studying the ability of flies to serve as a vector of human and other vertebrate pathogens. His work also extended beyond these topics, creating key studies on flies and their associated microbial ecology. These efforts led to numerous research publications and two books on flies and their associated microorganisms.

View Article and Find Full Text PDF

During use of sodium hypochlorite bleach, gas-phase hypochlorous acid (HOCl) and chlorine (Cl) are released, which can react with organic compounds present in indoor air. Reactivity between HOCl/Cl and limonene, a common constituent of indoor air, has been observed. The purpose of this study was to characterize the chemical species generated from gas-phase reactions between HOCl/Cl and limonene.

View Article and Find Full Text PDF