Background: Collectively, plants produce a huge variety of secondary metabolites (SMs) which are involved in the adaptation of plants to biotic and abiotic stresses. The most characteristic feature of SMs is their striking inter- and intraspecific chemical diversity. Cytochrome P450 monooxygenases (CYPs) often play an important role in the biosynthesis of SMs and thus in the evolution of chemical diversity.
View Article and Find Full Text PDFSalicylic acid (SA) is an essential hormone for development and induced defense against biotrophic pathogens in plants. The formation of SA mainly derives from chorismate via demonstrated isochorismate synthase (ICS) and presumed isochorismate pyruvate lyase (IPL)-mediated steps in Arabidopsis thaliana, but so far no plant enzyme displaying IPL activity has been identified. Here, we developed an E.
View Article and Find Full Text PDFMonoterpenoid indole alkaloids (MIAs) are produced as plant defence compounds. In the medicinal plant Catharanthus roseus, they comprise the anticancer compounds vinblastine and vincristine. The iridoid (monoterpenoid) pathway forms one of the two branches that feed MIA biosynthesis and its activation is regulated by the transcription factor (TF) basic helix-loop-helix (bHLH) iridoid synthesis 1 (BIS1).
View Article and Find Full Text PDFBiotechnol Adv
December 2017
Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites.
View Article and Find Full Text PDFPlants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary.
View Article and Find Full Text PDF