Publications by authors named "J Melnyk"

Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases.

View Article and Find Full Text PDF

The androgen receptor (AR) is a central driver of aggressive prostate cancer. After initial treatment with androgen receptor signaling inhibitors (ARSi), reactivation of AR signaling leads to resistance. Alternative splicing of AR mRNA yields the AR-V7 splice variant, which is currently an undruggable mechanism of ARSi resistance: AR-V7 lacks a ligand binding domain, where hormones and anti-androgen antagonists act, but still activates AR signaling.

View Article and Find Full Text PDF
Article Synopsis
  • COVID-19, caused by the virus SARS-CoV-2, has led to millions of deaths and significant global challenges, with a new concerning variant named B.1.1.7 emerging from the UK.
  • Research has shown that host-directed therapies, like plitidepsin and ralimetinib, may be effective against both the original virus and the new variant, showing promise against resistance.
  • Plitidepsin is notably more potent than remdesivir in treating these viral infections, emphasizing the need to develop host-targeted treatments to manage current and future coronavirus outbreaks.
View Article and Find Full Text PDF

Alternative splicing of the androgen receptor (AR) is frequently observed in castration resistant prostate cancer (CRPC). One AR isoform, the AR-V7 splice variant, is a constitutively active transcription factor which lacks a ligand binding domain and is therefore undruggable. AR-V7 expression correlates with resistance to androgen receptor signaling inhibitors (ARSi) and poor clinical prognoses.

View Article and Find Full Text PDF

The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest.

View Article and Find Full Text PDF