Pathogenic mutations that cause rhodopsin misfolding lead to a spectrum of currently untreatable blinding diseases collectively termed retinitis pigmentosa. Small molecules to correct rhodopsin misfolding are therefore urgently needed. In this study, we utilized virtual screening to search for drug-like molecules that bind to the orthosteric site of rod opsin and improve its folding and trafficking.
View Article and Find Full Text PDFMachine learning (ML) models now play a crucial role in predicting properties essential to drug development, such as a drug's logscale acid-dissociation constant (p). Despite recent architectural advances, these models often generalize poorly to novel compounds due to a scarcity of ground-truth data. Further, these models lack interpretability.
View Article and Find Full Text PDFHigh-throughput characterization of antibody-antigen complexes at the atomic level is critical for understanding antibody function and enabling therapeutic development. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) enables rapid epitope mapping, but its data are too sparse for independent structure determination. In this study, we introduce RosettaHDX, a hybrid method that combines computational docking with differential HDX-MS data to enhance the accuracy of antibody-antigen complex models beyond what either method can achieve individually.
View Article and Find Full Text PDFComputational protein design is becoming increasingly helpful in the development of new protein therapeutics with enhanced efficacy, specificity, and minimal side effects, for precise modulation of biological pathways. In vascular biology, the interaction between vascular endothelial growth factor A (VEGFA) and its receptors (VEGFR1-R3) is a pivotal process underlying blood vessel growth. Dysregulation of this pathway contributes to diseases such as cancer and diabetic retinopathy.
View Article and Find Full Text PDF