Azide functionalization of protein and peptide lysine residues allows selective bioorthogonal labeling to introduce new, site selective functionaltiy into proteins. Optimised diazotransfer reactions under mild conditions allow aqueous diazotransfer to occur in just 20 min at pH 8.5 on amino acid, peptide and protein targets.
View Article and Find Full Text PDFAffinity-based probes are valuable tools for detecting binding interactions between small molecules and proteins in complex biological environments. Metalloproteins are a class of therapeutically significant biomolecules which bind metal ions as part of key structural or catalytic domains and are compelling targets for study. However, there is currently a limited range of chemical tools suitable for profiling the metalloproteome.
View Article and Find Full Text PDFA series of chemically-modified oligonucleotides for targeting the DNA repair nuclease SNM1A have been designed and synthesised. Each oligonucleotide contains a modified internucleotide linkage designed to both mimic the native phosphodiester backbone and chelate to the catalytic zinc ion(s) in the SNM1A active site. Dinucleoside phosphoramidites containing urea, squaramide, sulfanylacetamide, and sulfinylacetamide linkages were prepared and employed successfully in solid-phase oligonucleotide synthesis.
View Article and Find Full Text PDFNucleoside analogs show useful bioactive properties. A versatile solid-phase synthesis that readily enables the diversification of thymine-containing nucleoside analogs is presented. The utility of the approach is demonstrated with the preparation of a library of compounds for analysis with SNM1A, a DNA damage repair enzyme that contributes to cytotoxicity.
View Article and Find Full Text PDF