Although we are currently in the era of noisy intermediate scale quantum devices, several studies are being conducted with the aim of bringing machine learning to the quantum domain. Currently, quantum variational circuits are one of the main strategies used to build such models. However, despite its widespread use, we still do not know what are the minimum resources needed to create a quantum machine learning model.
View Article and Find Full Text PDFReversibility in artificial neural networks allows us to retrieve the input given an output. We present feature alignment, a method for approximating reversibility in arbitrary neural networks. We train a network by minimizing the distance between the output of a data point and the random output with respect to a random input.
View Article and Find Full Text PDFIntroduction: We report, herein, in vitro, and in vivo toxicity evaluation of silver nanoparticles stabilized with gum arabic protein (AgNP-GP) in embryos and in Sprague Dawley rats.
Purpose: The objective of this investigation was to evaluate in vitro and in vivo toxicity of silver nanoparticles stabilized with gum arabic protein (AgNP-GP), in multispecies due to the recognition that toxicity evaluations beyond a single species reflect the environmental realism. In the present study, AgNP-GP was synthesized through the reduction of silver salt using the tri-alanine-phosphine peptide (commonly referred to as "Katti Peptide") and stabilized using gum arabic protein.
Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2012
Nuclear magnetic resonance (NMR) was successfully employed to test several protocols and ideas in quantum information science. In most of these implementations, the existence of entanglement was ruled out. This fact introduced concerns and questions about the quantum nature of such bench tests.
View Article and Find Full Text PDF