Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.
View Article and Find Full Text PDFIn the United States in 2021, an outbreak of 4 cases of Burkholderia pseudomallei, the etiologic agent of melioidosis and a Tier One Select Agent (potential for deliberate misuse and subsequent harm), resulted in 2 deaths. The causative strain, B. pseudomallei ATS2021, was unintentionally imported into the United States in an aromatherapy spray manufactured in India.
View Article and Find Full Text PDFAlthough smallpox has been eradicated, other orthopoxviruses continue to be a public health concern as exemplified by the ongoing Mpox (formerly monkeypox) global outbreak. While medical countermeasures (MCMs) previously approved by the Food and Drug Administration for the treatment of smallpox have been adopted for Mpox, previously described vulnerabilities coupled with the questionable benefit of at least one of the therapeutics during the 2022 Mpox outbreak reinforce the need for identifying and developing other MCMs against orthopoxviruses. Here, we screened a panel of Merck proprietary small molecules and identified a novel nucleoside inhibitor with potent broad-spectrum antiviral activity against multiple orthopoxviruses.
View Article and Find Full Text PDF, the causative agent of the disease melioidosis, has been isolated from the environment in 45 countries. The treatment of melioidosis is complex, requiring lengthy antibiotic regimens, which can result in the relapse of the disease following treatment cessation. It is important that novel therapies to treat infections with be assessed in appropriate animal models, and discussions regarding the different protocols used between laboratories are critical.
View Article and Find Full Text PDFObjectives: To evaluate the in vitro activity and in vivo efficacy of delafloxacin against Bacillus anthracis, the causative agent of anthrax.
Methods: MICs were obtained according to CLSI guidelines for 30 virulent isolates and 14 attenuated antibiotic-resistant strains. For the in vivo efficacy study, mice were administered delafloxacin (30-62.