Background: N-malonyl 1-aminocyclopropane-1-carboxylic acid (MACC) is a major conjugate of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and may therefore play an important role in regulating ethylene production, as well as ethylene-independent ACC signalling. While the enzyme responsible for this derivatization, ACC malonyltransferase (AMT), has been studied in the past, its identity remains unknown. Methods to assay AMT activity are not well established, and no standardized assay has been described.
View Article and Find Full Text PDFCancer is a leading cause of mortality globally, often diagnosed at advanced stages with metastases already present, complicating treatment efficacy. Traditional treatments like chemotherapy and radiotherapy face challenges such as lack of specificity and drug resistance. The hallmarks of cancer, as defined by Hanahan and Weinberg, describe tumors as complex entities capable of evolving traits that promote malignancy, including sustained proliferation, resistance to cell death, and metastasis.
View Article and Find Full Text PDFCytochrome P450 monooxygenases are an extensive and unique class of enzymes, which can regio- and stereo-selectively functionalise hydrocarbons by way of oxidation reactions. These enzymes are naturally occurring but have also been extensively applied in a synthesis context, where they are used as efficient biocatalysts. Recently, a biosynthetic pathway where a cytochrome P450 monooxygenase catalyses a critical step of the pathway was uncovered, leading to the production of a number of products that display high antitumour potency.
View Article and Find Full Text PDFCovering: up to October 2023Many bioactive natural products are synthesized by microorganisms that are either difficult or impossible to cultivate under laboratory conditions, or that produce only small amounts of the desired compound. By transferring biosynthetic gene clusters (BGCs) into alternative host organisms that are more easily cultured and engineered, larger quantities can be obtained and new analogues with potentially improved biological activity or other desirable properties can be generated. Moreover, expression of cryptic BGCs in a suitable host can facilitate the identification and characterization of novel natural products.
View Article and Find Full Text PDFMicrobes are increasingly employed as cell factories to produce biomolecules. This often involves the expression of complex heterologous biosynthesis pathways in host strains. Achieving maximal product yields and avoiding build-up of (toxic) intermediates requires balanced expression of every pathway gene.
View Article and Find Full Text PDF