Polyamine involvement in root development at low temperature was studied in seedlings of Pringlea antiscorbutica R. Br. This unique endemic cruciferous species from the subantarctic zone is subjected to strong environmental constraints and shows high polyamine contents.
View Article and Find Full Text PDFDFMO (alpha-DL-difluoromethylornithine), a specific irreversible inhibitor of ornithine decarboxylase (ODC), a polyamine biosynthetic pathway enzyme, strongly inhibits root growth and arbuscular mycorrhizal infection of Pisum sativum (P56 myc+, isogenic mutant of cv. Frisson). This inhibition is reversed when exogenous polyamine (putrescine) is included in the DFMO treatment, showing that the effect of DFMO on arbuscular mycorrhizal infection is indeed due to putrescine limitation and suggesting that ODC may have a role in root growth and mycorrhizal infection.
View Article and Find Full Text PDFWe present four examples of attenuation of the transformed phenotype caused by the root-inducing, left-hand, transferred DNA from Agrobacterium rhizogenes in tobacco (Nicotiana tabacum). The first was associated with a genetic variable (homozygosity for the T-DNA), and the second was induced at the physiological level by putrescine and tyramine, suggesting that the transformed phenotype depends on defective polyamine metabolism. Physiological attenuation is further illustrated in the third example, in which the inhibition of flowering caused by P35S-rolA, a gene from the root-inducing, left-hand, transferred DNA driven by a strong viral promoter, was attenuated by grafting the transformed shoot onto non-transformed rootstock that had been induced to flower.
View Article and Find Full Text PDFPlant roots provide anchorage and absorb the water and minerals necessary for photosynthesis in the aerial parts of the plant. Since plants are sessile organisms, their root systems must forage for resources in heterogeneous soils through differential branching and elongation [(1988) Funct. Ecol.
View Article and Find Full Text PDFalpha-dl-Difluoromethylarginine (DFMA) and alpha-dl-difluoromethylornithine (DFMO), specific irreversible inhibitors of putrescine biosynthesis were applied to Nicotiana tabacum var. Xanthi nc during floral induction. DFMO, but not DFMA, induced a phenotype in tobacco that resembles the transformed phenotype attributed to the root-inducing, left-hand, transferred DNA of Agrobacterium rhizogenes, including wrinkled leaves, shortened internodes, reduced apical dominance, and retarded flowering.
View Article and Find Full Text PDF