Publications by authors named "J Markert"

The authors present a comprehensive review on the history and development of oncolytic herpes simplex viral therapies for malignant glioma with a focus on mechanisms of delivery in prior and ongoing clinical trials. This review highlights the advancements made with regard to delivering these therapies to a highly complex immunologic environment in the setting of the blood-brain and blood-tumor barrier in a safe and effective manner.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate intraoperative diagnosis of primary CNS lymphoma (PCNSL) is vital for surgical decisions but is challenging due to similar features with other CNS diseases; a new method combines stimulated Raman histology (SRH) with deep learning to improve this process.
  • The RapidLymphoma system uses a portable Raman microscope to create virtual images of tissue samples in under three minutes and employs a deep learning model trained on 54,000 images, allowing it to detect PCNSL and differentiate it from other conditions effectively.
  • In testing, RapidLymphoma achieved a high accuracy rate of 97.81%, performing better than traditional methods, and demonstrated its capability to identify specific histological features crucial for diagnosis, providing quick feedback
View Article and Find Full Text PDF

During transcription, RNA polymerase II traverses through chromatin, and posttranslational modifications including histone methylations mark regions of active transcription. Histone protein H3 lysine 36 trimethylation (H3K36me3), which is established by the histone methyltransferase SET domain containing 2 (SETD2), suppresses cryptic transcription, regulates splicing, and serves as a binding site for transcription elongation factors. The mechanism by which the transcription machinery coordinates the deposition of H3K36me3 is not well understood.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate intraoperative diagnosis of primary CNS lymphoma (PCNSL) is challenging due to overlapping features with other CNS conditions, but a new method combining stimulated Raman histology (SRH) and deep learning seeks to improve this.
  • The deep learning system, RapidLymphoma, analyzes unprocessed tissue samples quickly, achieving high accuracy in distinguishing PCNSL from other entities, with an overall accuracy of 97.81% in a test cohort.
  • RapidLymphoma not only provides rapid diagnostic results but also visual feedback, aiding surgical decision-making and potential treatment strategies within a critical timeframe.
View Article and Find Full Text PDF

Background: Neuroblastoma is the most common extracranial solid tumor in children and accounts for 15% of pediatric cancer related deaths. Targeting neuroblastoma with immunotherapies has proven challenging due to a paucity of immune cells in the tumor microenvironment and the release of immunosuppressive cytokines by neuroblastoma tumor cells. We hypothesized that combining an oncolytic Herpes Simplex Virus (oHSV) with natural killer (NK) cells might overcome these barriers and incite tumor cell death.

View Article and Find Full Text PDF