Publications by authors named "J Marhold"

The R2TP is a recently identified Hsp90 co-chaperone, composed of four proteins as follows: Pih1D1, RPAP3, and the AAA(+)-ATPases RUVBL1 and RUVBL2. In mammals, the R2TP is involved in the biogenesis of cellular machineries such as RNA polymerases, small nucleolar ribonucleoparticles and phosphatidylinositol 3-kinase-related kinases. Here, we characterize the spaghetti (spag) gene of Drosophila, the homolog of human RPAP3.

View Article and Find Full Text PDF

Centrosomes are central regulators of mitosis that are often amplified in cancer cells. Centrosomes function both as organizers of the mitotic spindle and as reaction centers to trigger activation of Cdk1 and G(2)/M transition in the cell cycle, but their functional organization remains incomplete. Recent proteomic studies have identified novel components of the human centrosome including Cep63, a protein of unknown function that Xenopus studies have implicated in mitotic spindle assembly and spindle inactivation after DNA damage.

View Article and Find Full Text PDF

Primary microcephaly, Seckel syndrome, and microcephalic osteodysplastic primordial dwarfism type II (MOPD II) are disorders exhibiting marked microcephaly, with small brain sizes reflecting reduced neuron production during fetal life. Although primary microcephaly can be caused by mutations in microcephalin (MCPH1), cells from patients with Seckel syndrome and MOPD II harbor mutations in ataxia telangiectasia and Rad3 related (ATR) or pericentrin (PCNT), leading to disturbed ATR signaling. In this study, we show that a lack of MCPH1 or PCNT results in a loss of Chk1 from centrosomes with subsequently deregulated activation of centrosomal cyclin B-Cdk1.

View Article and Find Full Text PDF

We describe a second-generation deficiency kit for Drosophila melanogaster composed of molecularly mapped deletions on an isogenic background, covering approximately 77% of the Release 5.1 genome. Using a previously reported collection of FRT-bearing P-element insertions, we have generated 655 new deletions and verified a set of 209 deletion-bearing fly stocks.

View Article and Find Full Text PDF

DNA methylation is an epigenetic modification that is essential for gene silencing and genome stability in many organisms. Although methyltransferases that promote DNA methylation are well characterized, the molecular mechanism underlying active DNA demethylation is poorly understood and controversial. Here we show that Gadd45a (growth arrest and DNA-damage-inducible protein 45 alpha), a nuclear protein involved in maintenance of genomic stability, DNA repair and suppression of cell growth, has a key role in active DNA demethylation.

View Article and Find Full Text PDF