Spintronic terahertz emitters (STEs), based on optical excitation of nanometer thick ferromagnetic/heavy metal (FM/HM) heterojunctions, have become important sources for the generation of terahertz (THz) pulses. However, the efficiency of the optical-to-THz conversion remains limited. Although optical techniques have been developed to enhance the optical absorption, no investigations have studied the application of THz cavities.
View Article and Find Full Text PDFThe investigation of strong coupling between light and matter is an important field of research. Its significance arises not only from the emergence of a plethora of intriguing chemical and physical phenomena, often novel and unexpected, but also from its provision of important tool sets for the design of core components for novel chemical, electronic, and photonic devices such as quantum computers, lasers, amplifiers, modulators, sensors and more. Strong coupling has been demonstrated for various material systems and spectral regimes, each exhibiting unique features and applications.
View Article and Find Full Text PDFOver the past few decades, THz technology has made considerable progress, evidenced by the performance of current THz sources and detectors, as well as the emergence of several THz applications. However, in the realm of quantum technologies, the THz spectral domain is still in its infancy, unlike neighboring spectral domains that have flourished in recent years. Notably, in the microwave domain, superconducting qubits currently serve as the core of quantum computers, while quantum cryptography protocols have been successfully demonstrated in the visible and telecommunications domains through satellite links.
View Article and Find Full Text PDF2D materials, such as transition metal dichalcogenides, are ideal platforms for spin-to-charge conversion (SCC) as they possess strong spin-orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC.
View Article and Find Full Text PDFThe helicity of three-dimensional (3D) topological insulator surface states has drawn significant attention in spintronics owing to spin-momentum locking where the carriers' spin is oriented perpendicular to their momentum. This property can provide an efficient method to convert charge currents into spin currents, and vice-versa, through the Rashba-Edelstein effect. However, experimental signatures of these surface states to the spin-charge conversion are extremely difficult to disentangle from bulk state contributions.
View Article and Find Full Text PDF