Emerging data suggest that air pollution is a persistent source of neuroinflammation, reactive oxygen species (ROS), and neuropathology that contributes to central nervous system (CNS) disorders. Previous research using animal models has shown that exposure to diesel exhaust causes considerable disruption of the blood-brain barrier (BBB), leading to marked neuroinflammation. However, the effects of biodiesel exhaust on cerebrovascular integrity and neuroinflammation have not been explored previously.
View Article and Find Full Text PDFNeurodegenerative disorders present complex pathologies characterized by various interconnected factors, including the aggregation of misfolded proteins, oxidative stress, neuroinflammation and compromised blood-brain barrier (BBB) integrity. Addressing such multifaceted pathways necessitates the development of multi-target therapeutic strategies. Emerging research indicates that probucol, a historic lipid-lowering medication, offers substantial potential in the realm of neurodegenerative disease prevention and treatment.
View Article and Find Full Text PDFIntroduction: Type 2 diabetes (T2D) is associated with chronic inflammation and neurovascular changes that lead to functional impairment and atrophy in neural-derived tissue. A reduction in retinal thickness is an early indicator of diabetic retinopathy (DR), with progressive loss of neuroglia corresponding to DR severity. The brain undergoes similar pathophysiological events as the retina, which contribute to T2D-related cognitive decline.
View Article and Find Full Text PDFIncreased expression of the voltage-gated potassium channel Kv1.3 in activated microglia, and the subsequent release of pro-inflammatory mediators, are closely associated with the progression of Alzheimer's disease (AD). Studies have shown that reducing neuroinflammation through the non-selective blockade of microglial Kv1.
View Article and Find Full Text PDF