Packed columns are commonly used in post-combustion processes to capture CO emissions by providing enhanced contact area between a CO-laden gas and CO-absorbing solvent. To study and optimize solvent-based post-combustion carbon capture systems (CCSs), computational fluid dynamics (CFD) can be used to model the liquid-gas countercurrent flow hydrodynamics in these columns and derive key determinants of CO-capture efficiency. However, the large design space of these systems hinders the application of CFD for design optimization due to its high computational cost.
View Article and Find Full Text PDFFront Artif Intell
November 2024
Computational analysis of countercurrent flows in packed absorption columns, often used in solvent-based post-combustion carbon capture systems (CCSs), is challenging. Typically, computational fluid dynamics (CFD) approaches are used to simulate the interactions between a solvent, gas, and column's packing geometry while accounting for the thermodynamics, kinetics, heat, and mass transfer effects of the absorption process. These simulations can then be used explain a column's hydrodynamic characteristics and evaluate its CO-capture efficiency.
View Article and Find Full Text PDFOrganophosphorus nerve agents (OPNA) are hazardous environmental exposures to the civilian population and have been historically weaponized as chemical warfare agents (CWA). OPNA exposure can lead to several neurological, sensory, and motor symptoms that can manifest into chronic neurological illnesses later in life. There is still a large need for technological advancement to better understand changes in brain function following OPNA exposure.
View Article and Find Full Text PDFAn isolate of a Gram-positive, strictly aerobic, motile, rod-shaped, endospore forming bacterium was originally isolated from soil when screening and bioprospecting for plant beneficial microorganisms. Phylogenetic analysis of the 16S rRNA gene sequences indicated that this strain was closely related to Lysinibacillus fusiformis NRRL NRS-350 (99.7%) and Lysinibacillus sphaericus NRRL B-23268 (99.
View Article and Find Full Text PDFAntimicrobial resistance is a growing problem. Novel resistance mechanisms continue to emerge, and the pipeline of antimicrobial development struggles to keep up. Antimicrobial stewardship and proper infection control are key in preventing the spread of these infections.
View Article and Find Full Text PDF