Publications by authors named "J MASEK"

The ReAct (Recovery, Activity) project is an ENFSI (European Network of Forensic Science Institutes) supported initiative comprising a large consortium of laboratories. Here, the results from more than 23 laboratories are presented. The primary purpose was to design experiments simulating typical casework circumstances; collect data and to implement Bayesian networks to assess the value (i.

View Article and Find Full Text PDF

Multiple myeloma is a plasma cell malignancy characterized by an abnormal increase in monoclonal immunoglobulins. Despite significant advances in treatment, some patients progress to more aggressive forms of multiple myeloma, including extramedullary disease or plasma cell leukemia. Although the exact molecular mechanisms are not known, several studies have confirmed the involvement of small extracellular vesicle-enriched microRNAs in multiple myeloma progression.

View Article and Find Full Text PDF
Article Synopsis
  • Fibrosis plays a role in healing but excessive fibrosis harms organ function, particularly in Alagille syndrome (ALGS), which is linked to mutations in the JAGGED1 gene that can lead to liver disease and fibrosis.
  • Research using Jag1 mice, a model for ALGS, demonstrated unusual liver characteristics, including immature liver cells and surprisingly few T cells, despite cholestasis (bile flow blockage).
  • The study also showed that when regulatory T cells were transferred to Rag1 mice, they led to less inflammation and fibrosis in response to liver damage, indicating that both hepatic and immune system flaws contribute to the fibrotic issues seen in ALGS.
View Article and Find Full Text PDF

Traditionally, anticancer therapies focus on restraining uncontrolled proliferation. However, these cytotoxic therapies expose cancer cells to direct killing, instigating the process of natural selection favoring survival of resistant cells that become the foundation for tumor progression and therapy failure. Recognizing this phenomenon has prompted the development of alternative therapeutic strategies.

View Article and Find Full Text PDF

Dry spells strongly influence biomass production in forest ecosystems. Their effects may last several years following a drought event, prolonging growth reduction and therefore restricting carbon sequestration. Yet, our understanding of the impact of dry spells on the vitality of trees' above-ground biomass components (e.

View Article and Find Full Text PDF