Background Aims: Human (h) adipose tissue-derived mesenchymal stromal cells (ASC) constitute an interesting cellular source for bone tissue engineering applications. Wnts, for example Wnt5a, are probably important regulators of osteogenic differentiation of stem cells, but the role of Wnt5a in hASC lineage commitment and the mechanisms activated upon Wnt5a binding are unknown. We examined whether Wnt5a induces osteogenic and/or adipogenic differentiation of hASC.
View Article and Find Full Text PDFBone mechanotransduction is vital for skeletal integrity. Osteocytes are thought to be the cellular structures that sense physical forces and transform these signals into a biological response. The Wnt/beta-catenin signaling pathway has been identified as one of the signaling pathways that is activated in response to mechanical loading, but the molecular events that lead to an activation of this pathway in osteocytes are not well understood.
View Article and Find Full Text PDFAbstract Salivary agglutinin (DMBT1SAG) is identical to lung glycoprotein-340 and encoded by deleted in malignant brain tumors-1. It is a member of the scavenger receptor cysteine-rich (SRCR) superfamily, proteins that have one or more SRCR domains. Salivary agglutinin plays a role in oral innate immunity by the binding and agglutination of oral streptococci.
View Article and Find Full Text PDFAdipose tissue-derived mesenchymal stem cells (AT-MSCs) are currently used for bone tissue engineering. AT-MSCs undergoing osteogenic differentiation respond to mechanical loading with increased cyclooxygenase-2 gene expression, a key enzyme in prostaglandin (PG) synthesis. PGs are potent multifunctional regulators in bone, exhibiting stimulatory and inhibitory effects on bone formation and resorption.
View Article and Find Full Text PDFIn order to analyze the clinical potential of two antimicrobial peptides, human lactoferrin 1-11 (hLF1-11) and synthetic histatin analogue Dhvar-5, we measured the killing effect on bacteria, and the potential toxicity on erythrocytes and bone cells. The antimicrobial activity was determined in a killing assay on six strains, including methicillin resistant Staphylococcus Aureus. The effect on human erythrocytes and MC3T3 mouse bone cells was measured with a hemolysis assay and a viability assay, respectively.
View Article and Find Full Text PDF