Publications by authors named "J M Veltmaat"

Mammary gland development starts during prenatal life, when at designated positions along the ventrolateral boundary of the embryonic or fetal trunk, surface ectodermal cells coalesce to form primordia for mammary glands, instead of differentiating into epidermis. With the wealth of genetically engineered mice available as research models, our understanding of the prenatal phase of mammary development has recently greatly advanced. This understanding includes the recognition of molecular and mechanistic parallels between prenatal and postnatal mammary morphogenesis and even tumorigenesis, much of which can moreover be extrapolated to human.

View Article and Find Full Text PDF

Background: Selection pressure on the number of teats has been applied to be able to provide enough teats for the increase in litter size in pigs. Although many QTL were reported, they cover large chromosomal regions and the functional mutations and their underlying biological mechanisms have not yet been identified. To gain a better insight in the genetic architecture of the trait number of teats, we performed a genome-wide association study by genotyping 936 Large White pigs using the Illumina PorcineSNP60 Beadchip.

View Article and Find Full Text PDF

Our understanding of prenatal morphogenesis of mammary glands has recently greatly advanced. This review focuses on morphogenesis proper, as well as cellular processes and tissue interactions involved in the progression of the embryonic mammary gland through sequential morphogenic stages in both the mouse and rabbit embryo. We provide a synthesis of both historical and more recent studies of embryonic mammary gland development, as well as arguments to revise old concepts about mechanisms of mammary line and rudiment formation.

View Article and Find Full Text PDF

The involvement of molecular mechanisms in a particular process such as embryonic mammary gland development, can be revealed by modulation of one or several factors that purportedly act in that process. If those factors or their inhibitors are soluble, their function can be tested by loading them onto small inert beads, which are then implanted in cultured explants of the tissue of interest, in this case embryonic flanks. We here describe a protocol for such experiments.

View Article and Find Full Text PDF