Many cancer cells share with yeast a preference for fermentation over respiration, which is associated with overactive glucose uptake and breakdown, a phenomenon called the Warburg effect in cancer cells. The yeast mutant shows even more pronounced hyperactive glucose uptake and phosphorylation causing glycolysis to stall at GAPDH, initiation of apoptosis through overactivation of Ras and absence of growth on glucose. The goal of the present work was to use the yeast strain to screen for novel compounds that would preferentially inhibit overactive glucose influx into glycolysis, while maintaining basal glucose catabolism.
View Article and Find Full Text PDFAcetate-producing var. strains could exert improved effects on ulcerative colitis, which here, was preclinically evaluated in an acute dextran sodium sulphate induced model of colitis. Nine-week-old female mice were divided into 12 groups, receiving either drinking water or 2.
View Article and Find Full Text PDFMany studies have focused on identifying the signaling pathway by which addition of glucose triggers post-translational activation of the plasma membrane H-ATPase in yeast. They have revealed that calcium signaling is involved in the regulatory pathway, supported for instance by the phenotype of mutants inARG82 that encodes an inositol kinase that phosphorylates inositol triphosphate (IP). Strong glucose-induced calcium signaling, and high glucose-induced plasma membrane H-ATPase activation have been observed in a specific yeast strain with the PJ genetic background.
View Article and Find Full Text PDFhas been a subject of growing interest due to its potential as a probiotic microorganism with applications in gastrointestinal health, but the molecular cause for its probiotic potency has remained elusive. The recent discovery that contains unique mutations causing high acetic acid accumulation and inhibition of bacterial growth provides a possible clue. The natural isolates Sb.
View Article and Find Full Text PDFMajor progress in developing Saccharomyces cerevisiae strains that utilize the pentose sugar xylose has been achieved. However, the high inhibitor content of lignocellulose hydrolysates still hinders efficient xylose fermentation, which remains a major obstacle for commercially viable second-generation bioethanol production. Further improvement of xylose utilization in inhibitor-rich lignocellulose hydrolysates remains highly challenging.
View Article and Find Full Text PDF