Publications by authors named "J M Szafron"

Background: Computational modeling indicated that pathological high shear stress (HSS; 100 dyn/cm) is generated in pulmonary arteries (PAs; 100-500 µm) in congenital heart defects causing PA hypertension (PAH) and in idiopathic PAH with occlusive vascular remodeling. Endothelial-to-mesenchymal transition (EndMT) is a feature of PAH. We hypothesize that HSS induces EndMT, contributing to the initiation and progression of PAH.

View Article and Find Full Text PDF

Equilibrated fluid-solid-growth (FSGe) is a fast, open source, three-dimensional (3D) computational platform for simulating interactions between instantaneous hemodynamics and long-term vessel wall adaptation through mechanobiologically equilibrated growth and remodeling (G&R). Such models can capture evolving geometry, composition, and material properties in health and disease and following clinical interventions. In traditional G&R models, this feedback is modeled through highly simplified fluid solutions, neglecting local variations in blood pressure and wall shear stress (WSS).

View Article and Find Full Text PDF

In the last decades, many computational models have been developed to predict soft tissue growth and remodeling (G&R). The constrained mixture theory describes fundamental mechanobiological processes in soft tissue G&R and has been widely adopted in cardiovascular models of G&R. However, even after two decades of work, large organ-scale models are rare, mainly due to high computational costs (model evaluation and memory consumption), especially in long-range simulations.

View Article and Find Full Text PDF

Purpose: Through their contractile and synthetic capacity, vascular smooth muscle cells (VSMCs) can regulate the stiffness and resistance of the circulation. To model the contraction of blood vessels, an active stress component can be added to the (passive) Cauchy stress tensor. Different constitutive formulations have been proposed to describe this active stress component.

View Article and Find Full Text PDF

In the last decades, many computational models have been developed to predict soft tissue growth and remodeling (G&R). The constrained mixture theory describes fundamental mechanobiological processes in soft tissue G&R and has been widely adopted in cardiovascular models of G&R. However, even after two decades of work, large organ-scale models are rare, mainly due to high computational costs (model evaluation and memory consumption), especially in long-range simulations.

View Article and Find Full Text PDF