Publications by authors named "J M Sperger"

Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity.

View Article and Find Full Text PDF

Multilevel interventions (MLIs) hold promise for reducing health inequities by intervening at multiple types of social determinants of health consistent with the socioecological model of health. In spite of their potential, methodological challenges related to study design compounded by a lack of tools for sample size calculation inhibit their development. We help address this gap by proposing the Multilevel Intervention Stepped Wedge Design (MLI-SWD), a hybrid experimental design which combines cluster-level (CL) randomization using a Stepped Wedge design (SWD) with independent individual-level (IL) randomization.

View Article and Find Full Text PDF

Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To fully capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity.

View Article and Find Full Text PDF

Background: The isolation of cell-free DNA (cfDNA) from the bloodstream can be used to detect and analyze somatic alterations in circulating tumor DNA (ctDNA), and multiple cfDNA-targeted sequencing panels are now commercially available for Food and Drug Administration (FDA)-approved biomarker indications to guide treatment. More recently, cfDNA fragmentation patterns have emerged as a tool to infer epigenomic and transcriptomic information. However, most of these analyses used whole-genome sequencing, which is insufficient to identify FDA-approved biomarker indications in a cost-effective manner.

View Article and Find Full Text PDF

Purpose: Men with metastatic castration-resistant prostate cancer (mCRPC) frequently develop resistance to androgen receptor signaling inhibitor (ARSI) treatment; therefore, new therapies are needed. Trophoblastic cell-surface antigen (TROP-2) is a transmembrane protein identified in prostate cancer and overexpressed in multiple malignancies. TROP-2 is a therapeutic target for antibody-drug conjugates (ADC).

View Article and Find Full Text PDF