Background: Current anatomic anterolateral ligament reconstruction is typically performed using either a gracilis tendon or an iliotibial band graft based on their quasi-static behavior. However, there is limited knowledge about their viscoelastic behaviors. This study aimed to characterize the viscoelastic properties of the anterolateral ligament, distal iliotibial band, distal gracilis tendon and proximal gracilis tendon for graft material choice in anterolateral ligament reconstruction.
View Article and Find Full Text PDFIntroduction: Despite the existence of diverse total knee implant designs, few data is available on the relationship between the level of implant constraint and the postoperative joint stability in the frontal plane and strain in the collateral ligaments. The current study aimed to document this relation in an ex vivo setting.
Materials And Methods: Six fresh-frozen lower limbs underwent imaging for preparation of specimen-specific surgical guides.
Introduction: Poor soft tissue balance in total knee arthroplasty (TKA) often results in patient dissatisfaction and reduced joint longevity. Patella-in-place balancing (PIPB) is a novel technique which aims to restore native collateral ligament behavior without collateral ligament release, while restoring post-operative patellar position. This study aimed to assess the effectiveness of this novel technique through a detailed ex vivo biomechanical analysis by comparing post-TKA tibiofemoral kinematics and collateral ligament behavior to the native condition.
View Article and Find Full Text PDFBackground: Unexplained pain in the medial proximal tibia frequently leads to revision after unicondylar knee arthroplasty (UKA). As one of the most important factors for osteogenic adaptive response, increased bone strain following UKA has been suggested as a possible cause.
Questions/purposes: In this study we: (1) performed a cadaver-based kinematic analysis on paired cadaveric specimens before and after mobile-bearing and fixed-bearing UKA; and (2) simultaneously characterized the strain distribution in the anterior and posterior proximal tibia during squatting.