Publications by authors named "J M Serratosa"

Objective: This study investigated the effectiveness and tolerability of brivaracetam (BRV) monotherapy in a large series of patients with epilepsy.

Method: This was a multicenter, retrospective, observational, non-interventional study in 24 hospitals across Spain. Patients aged ≥18 years who started on BRV monotherapy, either as first-line or following conversion, at least 1 year before database closure were included.

View Article and Find Full Text PDF

Microglia, the main resident immune cells in the central nervous system, are implicated in the pathogenesis of various neurological disorders. Much of our knowledge on microglial biology was obtained using rodent microglial cultures. To understand the role of microglia in human disease, reliable in vitro models of human microglia are necessary.

View Article and Find Full Text PDF

Lafora disease is a rare and fatal form of progressive myoclonic epilepsy typically occurring early in adolescence. The disease results from mutations in the EPM2A gene, encoding laforin, or the EPM2B gene, encoding malin. Laforin and malin work together in a complex to control glycogen synthesis and prevent the toxicity produced by misfolded proteins via the ubiquitin-proteasome system.

View Article and Find Full Text PDF

Objective: Cenobamate is an antiseizure medication (ASM) associated with high rates of seizure freedom and acceptable tolerability in patients with focal seizures. To achieve the optimal cenobamate dose for maximal potential effectiveness while avoiding or minimizing drug-related adverse events (AEs), the administration of cenobamate with other ASMs must be managed through concomitant ASM load reduction. A panel of Spanish epilepsy experts aimed to provide a Spanish consensus on how to adjust the dose of concomitant ASMs in patients with drug-resistant epilepsy (DRE) in order to improve the effectiveness and tolerability of adjunctive cenobamate.

View Article and Find Full Text PDF

Lafora disease is a rare and fatal form of progressive myoclonic epilepsy with onset during early adolescence. The disease is caused by mutations in EPM2A, encoding laforin, or EPM2B, encoding malin. Both proteins have functions that affect glycogen metabolism, including glycogen dephosphorylation by laforin and ubiquitination of enzymes involved in glycogen metabolism by malin.

View Article and Find Full Text PDF