"Free Zn2+" (rapidly exchangeable Zn2+) is stored along with glutamate in the presynaptic terminals of specific specialized (gluzinergic) cerebrocortical neurons. This synaptically releasable Zn2+ has been recognized as a potent modulator of glutamatergic transmission and as a key toxin in excitotoxic neuronal injury. Surprisingly (despite abundant work on bound zinc), neither the baseline concentration of free Zn2+ in the brain nor the presumed co-release of free Zn2+ and glutamate has ever been directly observed in the intact brain in vivo.
View Article and Find Full Text PDFThe mammalian CNS contains an abundance of chelatable zinc that is sequestered in the vesicles of glutamatergic presynaptic terminals and co-released with glutamate. Considerable Zn(2+) is also released during cerebral ischemia and reperfusion (I/R) although the mechanism of this release has not been elucidated. We report here the real time observation of increase of the concentration of extracellular Zn(2+) ([Zn(2+)](o)), accompanied by a rapid increase of intracellular free Zn(2+)concentration, in the areas of dentate gyrus (DG), CA1 and CA3 in acute rat hippocampus slices during ischemia simulated by deprivation of oxygen and glucose (OGD) followed by reperfusion with normal artificial cerebrospinal fluid.
View Article and Find Full Text PDFChelatable Zn(2+), which is found in the synaptic vesicles of certain glutamatergic neurons in several regions of the forebrain, is released during neuronal activity. Zn(2+) exhibits numerous effects on ligand-gated and voltage-dependent ion channels, and released Zn(2+) is therefore likely able to modulate synaptic transmission. The physiologically relevant actions of Zn(2+), however, have remained unclear.
View Article and Find Full Text PDFSpontaneous epileptiform burst activity occurs in acute hippocampal slice dentate granule cells perfused with 10mM potassium and 0.5mM calcium [J. Neurophys.
View Article and Find Full Text PDF