Publications by authors named "J M Sanchez-Puelles"

Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin disease caused by mutation of the gene. RDEB is associated with high levels of TGF-β1, which is likely to be involved in the fibrosis that develops in this disease. Endoglin (CD105) is a type III coreceptor for TGF-β1 and its overexpression in fibroblasts deregulates physiological Smad/Alk1/Alk5 signalling, repressing the synthesis of TGF-β1 and extracellular matrix (ECM) proteins.

View Article and Find Full Text PDF

Phenotypic drug discovery must take advantage of the large amount of clinical data currently available. In this sense, the impact of microRNAs (miRs) on human disease and clinical therapeutic responses is becoming increasingly well documented. Accordingly, it might be possible to use miR-based signatures as phenotypic read-outs of pathological status, for example in cancer.

View Article and Find Full Text PDF

Controlled delivery of multiple chemotherapeutics can improve the effectiveness of treatments and reduce side effects and relapses. Here in, we used albumin-stabilized gold nanoclusters modified with doxorubicin and SN38 (AuNCs-DS) as combined therapy for cancer. The chemotherapeutics are conjugated to the nanostructures using linkers that release them when exposed to different internal stimuli (Glutathione and pH).

View Article and Find Full Text PDF

Background: The expression of certain genes involved in response to oxidative stress is likely related to aging-related outcomes, such as frailty in old age. Given nutrition's substantial impact in aging and age-related diseases, one of its mechanisms might be through influencing gene expression.

Objective: This study aimed to investigate the association between nutrition and the expression of 15 genes related to cellular response to stress in older community-dwelling individuals.

View Article and Find Full Text PDF

Background: Specific mechanisms underlying frailty syndrome are not well known. Frailty can be viewed as a loss of functional reserve resulting in increased vulnerability to stressors. We hypothesize that pathways regulating cellular response to stress are potential players in the development of frailty.

View Article and Find Full Text PDF