Publications by authors named "J M Samonds"

Most vertebrates use head and eye movements to quickly change gaze orientation and sample different portions of the environment with periods of stable fixation. Visual information must be integrated across fixations to construct a complete perspective of the visual environment. In concert with this sampling strategy, neurons adapt to unchanging input to conserve energy and ensure that only novel information from each fixation is processed.

View Article and Find Full Text PDF

Most vertebrates use head and eye movements to quickly change gaze orientation and sample different portions of the environment with periods of stable fixation. Visual information must be integrated across several fixations to construct a more complete perspective of the visual environment. In concert with this sampling strategy, neurons adapt to unchanging input to conserve energy and ensure that only novel information from each fixation is processed.

View Article and Find Full Text PDF

In mice and other mammals, forebrain neurons integrate right and left eye information to generate a three-dimensional representation of the visual environment. Neurons in the visual cortex of mice are sensitive to binocular disparity, yet it is unclear whether that sensitivity is linked to the perception of depth. We developed a natural task based on the classic visual cliff and pole descent tasks to estimate the psychophysical range of mouse depth discrimination.

View Article and Find Full Text PDF

Stereopsis is a ubiquitous feature of primate mammalian vision, but little is known about if and how rodents such as mice use stereoscopic vision. We used random dot stereograms to test for stereopsis in male and female mice, and they were able to discriminate near from far surfaces over a range of disparities, with diminishing performance for small and large binocular disparities. Based on two-photon measurements of disparity tuning, the range of disparities represented in the visual cortex aligns with the behavior and covers a broad range of disparities.

View Article and Find Full Text PDF

Prolonged exposure to motion in one direction often leads to the illusion of motion in the opposite direction for stationary objects. This motion aftereffect likely arises across several visual areas from adaptive changes in the balance of activity and competitive interactions. We examined whether or not the mouse was susceptible to this same illusion to determine whether it would be a suitable model for learning about the neural representation of the motion aftereffect.

View Article and Find Full Text PDF