Publications by authors named "J M Sahler"

The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, resulted in global health and economic crisis at an exceptional level. The high transmissibility of SARS-CoV-2, a lack of population immunity, and the prevalence of severe clinical outcomes created a need for the rapid development of effective therapeutic countermeasures. Sybodies, or synthetic nanobodies, are a novel and unique class of synthetic antigen-binding fragments ideal for large-scale production.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus.

View Article and Find Full Text PDF

Perfluorohexane sulfonate (PFHxS) is a member of the per- and polyfluoroalkyls (PFAS) superfamily of molecules, characterized by their fluorinated carbon chains and use in a wide range of industrial applications. PFHxS and perfluorooctane sulfonate are able to accumulate in the environment and in humans with the approximated serum elimination half-life in the range of several years. More recently, some PFAS compounds have also been suggested as potential immunosuppressants.

View Article and Find Full Text PDF

Influenza is a highly contagious respiratory disease, resulting in an estimated 3 to 5 million cases of severe illness annually. While most influenza vaccines are administered parenterally via injection, one shortcoming is that they do not generate a strong immune response at the site of infection, which can become important in a pandemic. Intranasal vaccines can generate both local and systemic protective immune responses, can reduce costs, and enhance ease of administration.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the ongoing global pandemic associated with morbidity and mortality in humans. Although disease severity correlates with immune dysregulation, the cellular mechanisms of inflammation and pathogenesis of COVID-19 remain relatively poorly understood. Here, we used mouse-adapted SARS-CoV-2 strain MA10 to investigate the role of adaptive immune cells in disease.

View Article and Find Full Text PDF