Rev Sci Instrum
October 2024
The SPARC tokamak is a high-field, Bt0 ∼12 T, medium-sized, R0 = 1.85 m, tokamak that is presently under construction in Devens, MA, led by Commonwealth Fusion Systems. It will be used to de-risk the high-field tokamak path to a fusion power plant and demonstrate the commercial viability of fusion energy.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
Rydberg alkaline earth atoms are promising tools for quantum simulation and metrology. When one of the two valence electrons is promoted to long-lived circular states, the second valence electron can be optically manipulated without significant autoionization. We harness this feature to demonstrate laser slowing of a thermal atomic beam of circular strontium atoms.
View Article and Find Full Text PDFAn overview is given of SPARC's three main x-ray diagnostics, with a focus on the functions they fulfill with respect to tokamak operation. The first is an in-vessel soft x-ray tomography diagnostic, aimed at providing early campaign information on plasma position, MHD activity, and impurity content. The second is an ex-vessel set of hard x-ray scintillators aimed at detecting the presence of runaway electrons, in particular during plasma startup phases.
View Article and Find Full Text PDFRev Sci Instrum
August 2024
The design of a vacuum ultraviolet spectroscopy system has been performed to monitor and provide feedback for impurity control in SPARC. The spectrometer, covering a wavelength range of 10-2000 Å through a flat-field configuration with diffraction gratings, incorporates five survey lines of sight. This allows for comprehensive impurity analysis across the core and four divertor regions (inner/outer and upper/lower).
View Article and Find Full Text PDFPhys Rev Lett
September 2023
Circular Rydberg atoms (CRAs), i.e., Rydberg atoms with maximal orbital momentum, are highly promising for quantum computation, simulation, and sensing.
View Article and Find Full Text PDF