Publications by authors named "J M Piret"

Some respiratory viruses can cause a viral interference through the activation of the interferon (IFN) pathway that reduces the replication of another virus. Epidemiological studies of coinfections between SARS-CoV-2 and other respiratory viruses have been hampered by non-pharmacological measures applied to mitigate the spread of SARS-CoV-2 during the COVID-19 pandemic. With the ease of these interventions, SARS-CoV-2 and influenza A viruses can now co-circulate.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cells are widely used to manufacture biopharmaceuticals, most of all monoclonal antibodies (mAbs). Some CHO cell lines exhibit production instability, where the productivity of the cells decreases as a function of time in culture. To counter this, we designed a passaging strategy that, rather than maximizing the time spent in log-growth phase, mimics the first 7 days of a fed-batch production process.

View Article and Find Full Text PDF

Epidemic peaks of respiratory viruses that co-circulate during the winter-spring seasons can be synchronous or asynchronous. The occurrence of temporal patterns in epidemics caused by some respiratory viruses suggests that they could negatively interact with each other. These negative interactions may result from a programme of innate immune memory, known as trained immunity, which may confer broad protective effects against respiratory viruses.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) infections may increase morbidity and mortality in immunocompromised patients. Until recently, standard antiviral drugs against CMV were limited to viral DNA polymerase inhibitors (val)ganciclovir, foscarnet and cidofovir with a risk for cross-resistance. These drugs may also cause serious side effects.

View Article and Find Full Text PDF

Background: Diabetes is a disease affecting over 500 million people globally due to insulin insufficiency or insensitivity. For individuals with type 1 diabetes, pancreatic islet transplantation can help regulate their blood glucose levels. However, the scarcity of cadaveric donor islets limits the number of people that could receive this therapy.

View Article and Find Full Text PDF