The first dual immunosensor is reported for the determination of IL-12 and IL-23, two relevant biomarkers of Crohn's disease (CD). The strategy relies on the selective capture of the targets by the respective antibodies which were covalently immobilized onto SPCEs modified with crystalline nanocellulose (CNC) and multi-walled carbon nanotubes (MWCNTs) followed by conjugation with a detector antibody labelled with poly-HRP-Strept and amperometric transduction using the HO/HQ system. The combination of CNC, a nanomaterial scarcely exploited in immunosensing, with MWCNTs enables the preparation of a novel dual immunosensor for the determination of CD biomarkers in clinical samples, including faeces.
View Article and Find Full Text PDFInterleukin-6 (IL6) is a cytokine mainly involved in inflammatory processes associated with various diseases, from rheumatoid arthritis and pathogen-caused infections to cancer, where malignant cells exhibit high proliferation and overexpression of cytokines, including IL6. Furthermore, IL6 plays a fundamental role in detecting and differentiating tumor cells, including colorectal cancer (CRC) cells. Therefore, given its range of biological activities and pathological role, IL6 determination has been claimed for the diagnosis/prognosis of immune-mediated diseases.
View Article and Find Full Text PDFSeveral diseases of the oral cavity are related to compositional and functional shifts in the oral microbiome. The analysis of saliva is an attractive alternative for the diagnosis and prognosis of these diseases. Samples can be obtained by no invasive procedures and processing is relatively simple.
View Article and Find Full Text PDFThis work reports the development and application of a disposable amperometric sensor built on magnetic microcarriers coupled to an Express PCR strategy to amplify a specific DNA fragment of the chloroplast trnH-psbA. The procedure involves the selective capture of a 68-mer synthetic target DNA (or unmodified PCR products) through sandwich hybridization with RNA capture probe-modified streptavidin MBs and RNA signaling probes, labeled using antibodies specific to the heteroduplexes and secondary antibodies tagged with horseradish peroxidase. Amperometric measurements were performed on screen-printed electrodes using the HO/hydroquinone system.
View Article and Find Full Text PDFA trendsetting direct competitive-based biosensing tool has been developed and implemented for the determination of the polyunsaturated fatty acid arachidonic acid (ARA), a highly significant biological regulator with decisive roles in viral infections. The designed methodology involves a competitive reaction between the target endogenous ARA and a biotin-ARA competitor for the recognition sites of anti-ARA antibodies covalently attached to the surface of carboxylic acid-coated magnetic microbeads (HOOC-MµBs), followed by the enzymatic label of the biotin-ARA residues with streptavidin-horseradish peroxidase (Strep-HRP) conjugate. The resulting bioconjugates were magnetically trapped onto the sensing surface of disposable screen-printed carbon transducers (SPCEs) to monitor the extent of the biorecognition reaction through amperometry.
View Article and Find Full Text PDF