Publications by authors named "J M Pello"

Nanophotonics, and more specifically plasmonics, provides a rich toolbox for biomolecular sensing, since the engineered metasurfaces can enhance light-matter interactions to unprecedented levels. So far, biosensing associated with high-quality factor plasmonic resonances has almost exclusively relied on detection of spectral shifts and their associated intensity changes. However, the phase response of the plasmonic resonances have rarely been exploited, mainly because this requires a more sophisticated optical arrangement.

View Article and Find Full Text PDF

Light microscopes can detect objects through several physical processes, such as scattering, absorption, and reflection. In transparent objects, these mechanisms are often too weak, and interference effects are more suitable to observe the tiny refractive index variations that produce phase shifts. We propose an on-chip microscope design that exploits birefringence in an unconventional geometry.

View Article and Find Full Text PDF

In this Letter, we present a method to prepare a mixed electron-beam resist composed of a positive resist (ZEP520A) and C60 fullerene. The addition of C60 to the ZEP resist changes the material properties under electron beam exposure significantly. An improvement in the thermal resistance of the mixed material has been demonstrated by fabricating multimode interference couplers and coupling regions of microring resonators.

View Article and Find Full Text PDF

Heating of irradiated metallic e-beam generated nanostructures was quantified through direct measurements paralleled by novel model-based numerical calculations. By comparing discs, triangles, and stars we showed how particle shape and composition determines the heating. Importantly, our results revealed that substantial heat is generated in the titanium adhesive layer between gold and glass.

View Article and Find Full Text PDF

An ultrasmall (<10  μm length) polarization converter in InP membrane is fabricated and characterized. The device relies on the beating between the two eigenmodes of chemically etched triangular waveguides. Measurements show a very high polarization conversion efficiency of >99% with insertion losses of <-1.

View Article and Find Full Text PDF