Publications by authors named "J M Patete"

Understanding the nature of interactions between nanomaterials, such as commercially ubiquitous hematite (α-FeO) Nanorhombohedra (N-Rhomb) and biological systems is of critical importance for gaining insight into the practical applicability of nanomaterials. Microglia represent the first line of defense in the central nervous system (CNS) during severe injury or disease such as Parkinson's and Alzheimer's disease as illustrative examples. Hence, to analyze the potential cytotoxic effect of nanorhombohedra exposure in the presence of microglia, we have synthesized Rhodamine B (RhB) labeled-α-FeO N-Rhomb, with lengths of 47 ± 10 nm and widths of 35 ± 8 nm.

View Article and Find Full Text PDF

Due to their unique size, surface area, and chemical characteristics, nanoparticles' use in consumer products has increased. However, the toxicity of nanoparticle (NP) exposure during the manufacturing process has not been fully assessed. Tungstate NP are used in numerous products, including but not limited to scintillator detectors and fluorescent lighting.

View Article and Find Full Text PDF

We report the discovery of finite length scale effects on vibronic coupling in nanoscale α-Fe2O3 as measured by the behavior of vibronically activated d-d on-site excitations of Fe(3+) as a function of size and shape. An oscillator strength analysis reveals that the frequency of the coupled symmetry-breaking phonon changes with size, a crossover that we analyze in terms of increasing three-dimensional character to the displacement pattern. These findings demonstrate the flexibility of mixing processes in confined systems and suggest a strategy for both enhancing and controlling charge-lattice interactions in other materials.

View Article and Find Full Text PDF

Much progress has been made in using hematite (α-Fe2 O3 ) as a potentially practical and sustainable material for applications such as solar-energy conversion and photoelectrochemical (PEC) water splitting; however, recent studies have shown that the performance can be limited by a very short charge-carrier diffusion length or exciton lifetime. In this study, we performed ultrafast studies on hematite nanoparticles of different shapes to determine the possible influence of particle shape on the exciton dynamics. Nanorice, multifaceted spheroidal nanoparticles, faceted nanocubes, and faceted nanorhombohedra were synthesized and characterized by using SEM and XRD techniques.

View Article and Find Full Text PDF

As a means of developing a simple, cost-effective, and reliable method for probing nanoparticle behavior, we have used atomic force microscopy to gain a quantitative 3D visual representation of the deposition patterns of citrate-capped Au nanoparticles on a substrate as a function of (a) sample preparation, (b) the choice of substrate, (c) the dispersion solvent, and (d) the number of loading steps. Specifically, we have found that all four parameters can be independently controlled and manipulated in order to alter the resulting pattern and quantity of as-deposited nanoparticles. From these data, the sample preparation technique appears to influence deposition patterns most broadly, and the dispersion solvent is the most convenient parameter to use in tuning the quantity of nanoparticles deposited onto the surface under spin-coating conditions.

View Article and Find Full Text PDF