Publications by authors named "J M Moseley"

Advances in sequencing technology have unveiled examples of nucleus-encoded polycistronic genes, once considered rare. Exclusively polycistronic transcripts are prevalent in green algae, although the mechanism by which multiple polypeptides are translated from a single transcript is unknown. Here, we used bioinformatic and in vivo mutational analyses to evaluate competing mechanistic models for polycistronic expression in green algae.

View Article and Find Full Text PDF

Protein phosphorylation regulates many steps in the cell division process including cytokinesis. In the fission yeast , the anillin-like protein Mid1 sets the cell division plane and is regulated by phosphorylation. Multiple protein kinases act on Mid1, but no protein phosphatases have been shown to regulate Mid1.

View Article and Find Full Text PDF

Inherited Retinal Dystrophies (IRD) are diverse rare diseases that affect the retina and lead to visual impairment or blindness. Research in this field is ongoing, with over 60 EU orphan medicinal products designated in this therapeutic area by the Committee for Orphan Medicinal Products (COMP) at the European Medicines Agency (EMA). Up to now, COMP has used traditional disease terms, like retinitis pigmentosa, for orphan designation regardless of the product's mechanism of action.

View Article and Find Full Text PDF

Unlabelled: Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the green alga Chlamydomonas reinhardtii, Cu import is dependent on a transcription factor, Copper Response Regulator 1 (CRR1), responsible for activating genes in Cu-deficient cells. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family (CTR1 and CTR2) and a related soluble protein (CTR3).

View Article and Find Full Text PDF

Algae are diverse organisms with significant biotechnological potential for resource circularity. Taking inspiration from fermentative microbes, engineering algal genomes holds promise to broadly expand their application ranges. Advances in genome sequencing with improvements in DNA synthesis and delivery techniques are enabling customized molecular tool development to confer advanced traits to algae.

View Article and Find Full Text PDF