Publications by authors named "J M Monaghan"

6PPDQ is a tire-derived contaminant toxic to coho salmon (LC = 41-95 ng/L) found widely distributed in urban environments. Most monitoring efforts have relied on relatively few discrete samples collected at select locations across rain events. Early work has revealed that 6PPDQ concentrations vary widely over time and space, raising questions about when and where to collect samples.

View Article and Find Full Text PDF

Protein kinases are key components of multiple cell signaling pathways. Several receptor-like cytoplasmic kinases (RLCKs) have demonstrated roles in immune and developmental signaling across various plant species, making them of interest in the study of phosphorylation-based signal relay. Here, we present our investigation of a subgroup of RLCKs in Arabidopsis thaliana.

View Article and Find Full Text PDF

, commonly known as rapeseed or canola, is an economically valuable oilseed crop grown throughout Canada that currently faces several challenges due to industrial farming practices as well as a changing climate. Calcium-dependent protein kinases (CDPKs) are key regulators of stress signaling in multiple plant species. CDPKs sense changes in cellular calcium levels via a calmodulin-like domain and are able to respond to these changes via their protein kinase domain.

View Article and Find Full Text PDF

The calcium-dependent protein kinase CPK28 regulates several stress pathways in multiple plant species. Here, we aimed to discover CPK28-associated proteins in Arabidopsis thaliana. We used affinity-based proteomics and identified several potential CPK28 binding partners, including the C7 Raf-like kinases MRK1, RAF26, and RAF39.

View Article and Find Full Text PDF
Article Synopsis
  • Bone is a constantly changing 3D tissue, and traditional methods for studying it often require sample preparation that removes important spatial information.* -
  • The WISH-BONE method presented here allows researchers to label mRNA and proteins in whole mouse bones, preserving their 3D structure for better analysis.* -
  • This technique provides new protocols for understanding molecular interactions in osteocytes, offering potential applications in various areas of bone research despite some limitations in detection sensitivity.*
View Article and Find Full Text PDF