Interconnected or crossed magnetic nanowire networks have been fabricated by electrodeposition into a polycarbonate template with crossed cylindrical nanopores oriented ±30° with respect to the surface normal. Tailor-made nanoporous polymer membranes have been designed by performing a double energetic heavy ion irradiation with fixed incidence angles. The Ni and Ni/NiFe nanowire networks have been characterized by magnetometry as well as ferromagnetic resonance and compared with parallel nanowire arrays of the same diameter and density.
View Article and Find Full Text PDFThe dipolar interaction field in arrays of nickel nanotubes has been investigated on the basis of expressions derived from the effective demagnetizing field of the assembly as well as magnetometry measurements. The model incorporates explicitly the wall thickness and aspect ratio, as well as the spatial order of the nanotubes. The model and experiment show that the interaction field in nanotubes is smaller than that in solid nanowires due to the packing fraction reduction in tubes related to their inner cavity.
View Article and Find Full Text PDFA mean field model is presented for the configuration dependent effective demagnetizing and anisotropy fields in assemblies of exchange decoupled magnetic particles of arbitrary shape which are expressed in terms of the demagnetizing factors of the particles and the volumetric shape containing the assembly. Perpendicularly magnetized two-dimensional (2D) assemblies have been considered, for which it is shown that the demagnetizing field is lower than the continuous thin film. As an example of these 2D systems, arrays of bistable cylindrical nanowires have been characterized by remanence curves as well as ferromagnetic resonance, serving to show the correspondence of these measurements with the model and also to validate the mean field approach.
View Article and Find Full Text PDF