Significance: We present an approach to estimate with simple instrumentation the amount of red blood cells in the skin microvasculature, designated as parameter LRBC. Variations of parameter LRBC are shown to reflect local changes in the quantity of skin red blood cells during a venous occlusion challenge.
Aim: To validate a simple algebraic model of light transport in skin using the Monte Carlo method and to develop a measure of the red blood cell content in skin microvessels using the Monte Carlo predictions; to guide the development of an instrument to measure experimentally variations of the amount of red blood cells in the skin.
Biomed Eng Educ
November 2020
This paper describes the adaptation of a flipped Biomedical Electronics course with laboratories to remote learning at the start of the Covid-19 pandemic. In class collaborative work on problem sets was replaced by group work (4-5 students) in Zoom breakout sessions. When the groups assembled at random for each class had sufficiently progressed on a problem, a detailed solution was typed on the Multisim circuit simulator desktop (National Instruments) shared on the instructor screen.
View Article and Find Full Text PDFBehav Brain Res
December 2019
Studies of brain functional activation during spatial navigation using electrophysiology and immediate-early gene responses have typically targeted a limited number of brain regions. Our study provides the first whole brain analysis of cerebral activation during retrieval of spatial memory in the freely-moving rat. Rats (LEARNERS) were trained in the Barnes maze, an allocentric spatial navigation task, while CONTROLS received passive exposure.
View Article and Find Full Text PDFBackground: There is a need to prognosticate the severity of cystic fibrosis (CF) detected by newborn screening (NBS) by early assessment of CF transmembrane conductance regulator (CFTR) protein function. We introduce novel instrumentation and protocol for evaluating CFTR activity as reflected by β-adrenergically stimulated sweat secretion.
Methods: A pixilated image sensor detects sweat rates.
Intradialytic hypotensive events (IDH) accompanied by deleterious decreases of the cardiac output complicate up to 25% of hemodialysis treatments. Monitoring options available to track hemodynamic changes during hemodialysis have been found ineffective to anticipate the occurrence of IDH. We have assembled opto-electronic instrumentation that uses the fluorescence of a small bolus of indocyanine green dye injected in the hemodialysis circuit to estimate cardiac output and blood volume based on indicator dilution principles in patients receiving hemodialysis.
View Article and Find Full Text PDF