J Chem Phys
January 2011
The interaction of H atoms having relatively low average kinetic energy (∼0.025 eV) with both perfectly clean and D-covered HOPG surfaces is investigated using high resolution electron energy loss spectroscopy. From this study we confirm, in a controlled fashion, the presence of the theoretically predicted adsorption barrier since no adsorption is detected for such H atoms on HOPG.
View Article and Find Full Text PDFOrganic-metal interfaces, in particular, self-assembling systems, are interesting in the field of molecular electronics. In this study, we have investigated the formation of the Ag(110)-iron phthalocyanine (FePc) interface in a coverage range of less than 1 and up to 2 ML using synchrotron based photoelectron spectroscopy and low energy electron diffraction. As-deposited FePc forms a densely packed first layer exhibiting a 3 x 2c(6 x 2) symmetry.
View Article and Find Full Text PDFThe adsorption of H/D atoms on the graphite (0001) surface is investigated by means of both high-resolution electron-energy loss spectroscopy (HREELS) and periodic first-principle density-functional theory. The two methods converge towards two modes of adsorption: adsorption in clusters of about four hydrogen atoms and adsorption in pairs of atoms on contiguous carbon sites. The desorption energies estimated from the calculated dissociation energies range from 8 to 185 kJ mol(-1) leading to an estimated surface coverage at saturations of 30-44 at.
View Article and Find Full Text PDFPhys Rev B Condens Matter
September 1993