When environmental change is rapid or unpredictable, phenotypic plasticity can facilitate adaptation to new or stressful environments to promote population persistence long enough for adaptive evolution to occur. However, the underlying genetic mechanisms that contribute to plasticity and its role in adaptive evolution are generally unknown. Two main opposing hypotheses dominate-genetic compensation and genetic assimilation.
View Article and Find Full Text PDFAccurately determining the diet of wild animals can be challenging if food items are small, visible only briefly, or rendered visually unidentifiable in the digestive system. In some food caching species, an additional challenge is determining whether consumed diet items have been previously stored or are fresh. The Canada jay (Perisoreus canadensis) is a generalist resident of North American boreal and subalpine forests with anatomical and behavioural adaptations allowing it to make thousands of arboreal food caches in summer and fall that are presumably responsible for its high winter survival and late winter/early spring breeding.
View Article and Find Full Text PDFIntroduction: Neurotrophic tyrosine receptor kinase (NTRK) gene fusions occur in ~ 0.3% of all solid tumours but are enriched in some rare tumour types. Tropomyosin receptor kinase (TRK) inhibitors larotrectinib and entrectinib are approved as tumour-agnostic therapies for solid tumours harbouring NTRK fusions.
View Article and Find Full Text PDFThe genetic basis of adaptation is driven by both selection and the spectrum of available mutations. Given that the rate of mutation is not uniformly distributed across the genome and varies depending on the environment, understanding the signatures of selection across the genome is aided by first establishing what the expectations of genetic change are from mutation. To determine the interaction between salt stress, selection, and mutation across the genome, we compared mutations observed in a selection experiment for salt tolerance in Chlamydomonas reinhardtii to those observed in mutation accumulation (MA) experiments with and without salt exposure.
View Article and Find Full Text PDFUrban street design choices relating to tree planting, building height and spacing, ground cover, and building façade properties impact outdoor thermal exposure. However, existing tools to simulate heat exposure have limitations with regard to optimization of street design for pedestrian cooling. A microscale three-dimensional (3D) urban radiation and energy balance model, Temperatures of Urban Facets for Pedestrians (TUF-Pedestrian), was developed to simulate pedestrian radiation exposure and study heat-reducing interventions such as urban tree planting and modifications to building and paving materials.
View Article and Find Full Text PDF