The pivotal role of endothelial cells in the pathology of inflammatory diseases raised interest in the development of short interfering RNA (siRNA) delivery devices for selective pharmacological intervention in the inflamed endothelium. The current study demonstrates endothelial specific delivery of siRNAs and downregulation of inflammatory genes in activated endothelium in vivo by applying a novel type of targeted liposomes based on the cationic amphiphile SAINT-C18 (1-methyl-4-(cis-9-dioleyl)methyl-pyridinium-chloride). To create specificity for inflamed endothelial cells, these so-called SAINT-O-Somes were harnessed with antibodies against vascular cell adhesion protein 1 (VCAM-1).
View Article and Find Full Text PDFIn chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor κB signal transduction could silence the proinflammatory activation status of endothelial cells. For this, an adenovirus encoding dominant-negative IκB (dnIκB) as a therapeutic transgene was employed.
View Article and Find Full Text PDFIn order to selectively block nuclear factor kappaB (NF-kappaB)-dependent signal transduction in angiogenic endothelial cells, we constructed an alphavbeta3 integrin specific adenovirus encoding dominant negative IkappaB (dnIkappaB) as a therapeutic gene. By virtue of RGD modification of the PEGylated virus, the specificity of the cell entry pathway of adenovirus shifted from coxsacki-adenovirus receptor dependent to alphavbeta3 integrin dependent entry. The therapeutic outcome of delivery of the transgene into endothelial cells was determined by analysis of cellular responsiveness to tumor necrosis factor (TNF)-alpha.
View Article and Find Full Text PDFEndothelial cells actively participate in inflammatory events by regulating leukocyte recruitment via the expression of inflammatory genes such as E-selectin, VCAM-1, ICAM-1, IL-6, IL-8, and cyclooxygenase (COX)-2. In this study we showed by real-time RT-PCR that activation of human umbilical vein endothelial cells (HUVEC) by TNF-alpha and IL-1beta differentially affected the expression of these inflammatory genes. Combined treatment with TNF-alpha and IL-1beta resulted in nonadditive, additive, and even synergistic induction of expression of VCAM-1, IL-8, and IL-6, respectively.
View Article and Find Full Text PDFEndothelial cells play an important role in inflammatory diseases like rheumatoid arthritis by recruitment of inflammatory cells. The cytokines TNF-alpha and IL-1beta are major inducers of endothelial cell activation and are stimulators of inflammatory signal transduction pathway involving p38 MAPK (mitogen-activated protein kinase). The present study investigated the effects of p38 MAPK inhibition on cell adhesion molecule (CAM) expression and chemokine production by endothelial cells both on mRNA and protein level.
View Article and Find Full Text PDF